Esri StoryMaps have grown greatly in popularity over the last few years. They offer an engaging way to present a “spatial story” – one where geographic relationships or distribution are key to the narrative. To produce one you only need a free Esri account and some basic IT skills as they are very easy to produce. As well as looking professional and being an effective form of communication they also have a “Wow” factor with functionality such as the swipe animation where two maps are placed over each other and users can swipe between the two maps. Despite being easy to produce technically there is a lot to learn in order to make great story maps.
What they can be used for:
Telling a story where one or several maps are key to the narrative. For example, explaining the intermittent nature of a river by use of maps showing where it flowed on different dates.
Explaining how to use a complex, multi-layered map to understand a concept.
Telling the story of a journey or route, for example explaining features of a path along a river.
The course is open to all practitioners with an interest in river restoration and mapping. The course is suitable for consultants, contractors, academics, catchment partners, and representatives from local authorities, local government and statutory agencies.
The RHS Toolbox 1.5 features new functionality to perform a RHAT assessment and to import data from the RAPID database.
The software is on a free trial for 30 days and it is available for 32 and 64 bit version of Office.
New features:
River Hydromorphology Assessment Technique (RHAT) scoring form
The River Hydromorphology Assessment Technique (RHAT) was developed in Northern Ireland by the Department of Environment to assess the hydromorphological condition of rivers for the Water Framework Directive (WFD). The field survey methodology was based on RHS and contains the same amount of information as a standard survey. The main differences are the width of spot-checks, which in RHAT are 50 m wide. The RHAT survey methodology also allows for partial surveys of the stream as the final scoring system does not rely on recorded data for its implementation.
The field assessment of morphological condition as part of RHAT is carried out in the field using expert opinion. Eight attributes representing bank and channel features and geomorphological functions are assessed on the scale of 0 (bad) to 4 (high) for their condition. Guidance on assessing condition is provided in the RHAT manual.
As the RHAT condition assessment is not calculated directly from survey data, it is possible to derive the score for a standard RHS. The RHAT condition assessment sheet was therefore added to the RHS toolbox as an additional option whilst doing surveys
RHAT assessment form in the RHS Toolbox
RAPID data import
RAPID is an application developed by the Centre for Ecology and Hydrology in the United Kingdom to input and process RHS data.
You can now import data from the RAPID database version 2 and 3 using the import button.
. 2- Create a RHS folder somewhere on your computer (e.g. C drive) and extract the content of the zip file into that folder. 3- If you do not have Access 2010 or later already installed on your PC, you can download and install the free Access 2016 runtime here 4- Double-click the file RHSDataInput.accdr.
The RHS Toolbox development requires investment in time and resources so it is unfortunately not possible to deliver it free of charge. You have access to a trial version for 30 days after which you will have to register and purchase a license. During the trial period, every time you log in, you will be asked whether you wish to purchase a license and register. Information on pricing can be found here
Potential issues: the RHS Toolbox was tested on UK (English) Windows Operating Systems. Due to different ways of representing decimal points, some of its functionality may not work on French and other Operating Systems that use commas (,) instead of points (.) to represent the decimal fraction of real numbers. Please let us know if you come across such problems.
Last week was a bit of a first for us and myself. We (the River Restoration Centre) held our first full day online hydromorphological training course with a virtual field work component! Due to the Covid-19 outbreak, we have been unable to offer our usual series of training courses in person. The challenge here was to develop a course that provide the same kind of experience as the one we normally run that includes a very important field component where participants can directly experience hydromorphological processes and forms as well as pressures and impacts of modifications.
So we have been busy designing new ways of offering the same experience online by adding virtual site visits and even fieldwork. We delivered the Introduction to Hydromorphology (Level 1) training course using a combination of Zoom and Google Earth software. Fifteen delegates joined us on the Zoom call with regular switches to Google Earth and Streetview to demonstrate and experience hydromorphological processes forms and drivers virtually using one of our case study catchment on which we collected a lot of 360 photographs. Polls were set up to ask the delegates questions, and create as much of an interactive session as possible to keep everybody’s attention alive.
The crux of the course was to introduce delegates to a framework for analysing catchment and river processes, forms and how they are influenced by modifications and land management. This was achieved through formal short presentation followed by group work, in pairs, in the air and on virtual ground using Google Earth online, 360⁰ photos, and historic maps.
Delegates worked in pairs through tasks to spot features and modifications, think about processes, and map pressures. Finally, delegates were asked to assess everything we had gone over in the training and offer justified restoration options. This was a great opportunity to go over all the concepts we had been introduced to, and brainstorm ideas.
Feedback from the course has been really encouraging, and we are now looking at adapting the rest of our courses online and run more this Summer and Autumn. We are also considering adapting the River Habitat Survey course, potentially turning the existing presentations that are delivered in a training room into a series of online modules with virtual field work, and organising site visits separately over a few days to practice doing the survey whilst maintaining social distancing rules. We will be in touch with more information soon and we would welcome your suggestions.
In the meantime, please visit the RRC website to view our training events and please email us rrc@therrc.co.uk if you are interested in attending a virtual training course.
The RHS Toolbox 1.4 features new functionality to extract map data such as altitude, slope and geology as well as indices on hydromorphological naturalness and fine sediment runoff from agricultural sources. The software also features new indices assessing hydromorphological impact.
The new tools will help practitioners with habitat assessment for the Water Framework Directive, Planning Applications, River Restoration and more.
The software is on a free trial for 30 days and it is available for 32 and 64 bit version of Office.
New features:
Automated map data extraction for sites in England,
Wales and Scotland (only available to licenced users)
To be able to run a context analysis with the RHS Toolbox, you need to derive altitude, slope, distance to source and height of source to calculate the PCA score for your site that will be used to select sites of similar types (see Jeffers, 1998 in References and Context analysis).
Using
the RHS Toolbox, you can now automatically extract this information using a
database of previously derived point on the river network. A form will display
all nearby points using the mid-site grid reference and you will be able to map
them to decide which one to choose for your site (see below). This feature is only
available to licenced users and is not available to trial versions.
The process will not only extract data on for PCA score calculation but also background information on geology, sinuosity, typology using the Jeffers types (1998) and also predictions for four hydromorphological indices (Indices) in semi-natural conditions. This will enable the calculation of Hydromorphological Impact Ratio indices for your site to assess departure from semi-natural conditions (see below).
New indices
A
series of indices and fields have been added to the interface.
Hydromorphological Impact Ratios
Provided your site is located in Great Britain, the software will extract predictions for four hydromorphological indices (Appendix 2 and also in the resource section and Naura et al, 2016) at semi-natural conditions (the ‘expected’ column in the figure below). These indices were derived as part of a research project (Naura et al ms). The RHS Toolbox will then calculate Hydromorphological Impact Ratios (HIR) for each index.
Hydromorphological Impact Ratios representing the distance to semi-natural condition in % for four hydromorphological indices
HIRs represent the level of departure from semi-natural condition (or impact) for each index compared to the maximum level of departure (or maximum possible impact) that could be expected (see figure below and Appendix 4 or here for download). The HIRs are expressed as percentage values from 0% (no impact) to 100% (maximum possible impact). The site HIR represents the maximum possible impact for any of the four indices categorised into 12.5% impact classes:
Very Low : HIRindex between 0 and 12.5%
Low : HIRindex between 12.5 and 25%
Moderate : HIRindex between 25 and 37.5%
High : HIRindex between 37.5 and 50%
Very High : HIRindex between 50 and 100%.
Hydromorphological Impact Ratio derivation for the Channel Substrate Index. The ratio represents the relative difference between observed and expected index values compared to the maximum possible impact observable.
Agricultural fine sediment load and potential risk to
biota
Provided your site is located in Great Britain, the software will extract information on agricultural fine sediment delivery to your site in tonnes per year and derive a series of indices representing Agricultural Sediment Load (ASL), Fine Sediment Accumulation (FSA) and overall Agricultural Sediment Risk (ASR). These indices were derived as part of research for the UK government and published in 2016 (Naura et al 2016).
Total
agricultural fine sediment delivery represent all fine sediments transported
from upstream in the water column and local sediment delivery through run-off
and tributary inputs. The data are derived using modelling but can be entered
by hand by the user.
Local
agricultural fine sediment delivery represent all fine sediments delivered
through run-off and tributary inputs.
The
Fine Sediment Accumulation index is derived directly from your RHS site
spot-check data for channel substrate.
Sites will be categorised according to the number of spot-checks with
silt, sand or clay as:
Very low = 0
spot-checks with fine sediments
Low = 1 spot-check
with fine sediments
Moderate =2,3
spot-checks with fine sediments
High = 4 to 6
spot-checks with fine sediments
Very high = 7 to 10
spot-checks with fine sediments
The ASR combines the FSA and ASL using the following matrix
. 2- Create a RHS folder somewhere on your computer (e.g. C drive) and extract the content of the zip file into that folder. 3- If you do not have Access 2010 or later already installed on your PC, you can download and install the free Access 2016 runtime here 4- Double-click the file RHSDataInput.accdr.
The RHS Toolbox development requires investment in time and resources so it is unfortunately not possible to deliver it free of charge. You have access to a trial version for 30 days after which you will have to register and purchase a license. During the trial period, every time you log in, you will be asked whether you wish to purchase a license and register. Information on pricing can be found here
Potential issues: the RHS Toolbox was tested on UK (English) Windows Operating Systems. Due to different ways of representing decimal points, some of its functionality may not work on French and other Operating Systems that use commas (,) instead of points (.) to represent the decimal fraction of real numbers. Please let us know if you come across such problems.
by Professor Ian Maddock, University of Worcester, January 2020
Third year undergraduate students at the University of
Worcester can take an optional module in River
Conservation and Management as part of their Geography or Physical
Geography degrees. We offer a practical-based degree programme with a strong
emphasis on fieldwork and in this module, the practical work is focused around
the use of RHS. The first half of the module is largely classroom-based,
focusing on new approaches to environmentally-sensitive river management,
including river restoration, natural flood management and the application of
environmental flows. Guest speakers from
the EA, wildlife trusts, rivers trusts, local authorities and environmental
consultancies provide an overview of some of the organisations involved with
these topics and give students insights into potential careers relevant to
their interests.
copyright Ian Maddock
RHS provides the focus for the 2nd half of the
module. Students are familiarised with the field survey methods and features
that are assessed in the classroom and then get to trial the software in a PC
room with dummy data sets. This allows them to get used to data input and score
calculation and explore the impact of altering input fields and assessing the
effect on the metrics calculated. They get a feel for what influences the
Habitat Quality Assessment (HQA) and the Habitat Modification Score (HMS) and
their sensitivity to data input.
This is followed by three weeks of fieldwork using RHS. The
first one involves a ‘practice’ survey of a local stream and then straight back
into the computer room for data input and metric calculations. Students work in
small groups (2s and 3s) and all assess the same reach. Comparing scores
between groups and identifying which features were scored differently between
them enables a discussion on observer variability and the need for training to
help standardise approaches and optimise data quality. In the following two
weeks students assess two contrasting sites. One is a largely natural gravel-bed
stream in a local nature reserve, with minimal direct human impact and high
habitat quality. The second is a contrasting, heavily-modified urban stream
dominated by channelisation including weirs, bank and bed reinforcements and
channel realignment. For their assignment, students are required to produce a
mock consultancy report and use the RHS outputs to 1) assess the current
habitat quality and habitat modification, and 2) make recommendations for the
implementation of suitable river restoration techniques. The important thing
with the latter is they use the breakdown of the HQA and HMS metrics to
underpin their recommendations, explicitly acknowledging the output of the RHS
survey results to justify the techniques proposed.
RHS provides an ideal field technique for this type of work
for many reasons. Students can become proficient in its use relatively quickly,
survey times are sufficiently short to enable them to conduct a survey in a 3-4
hour timetable slot, it promotes a discussion about how to identify river
habitat features, what features are deemed ecologically relevant and how the
differing importance of features is acknowledged by the differential weighting
of them towards the calculated metrics, and how habitats have been impacted in
the past or can be restored. It also enables a more general discussion on the
use of rapid visual assessment methods as a survey protocol compared to more
detailed but time consuming quantitative techniques. We plan to trial the new
mobile app this forthcoming year which should provide a more convenient way of
recording data in the field and uploading it to the PC-based software.
You want to make a real difference in the field of river restoration and habitat enhancement, working in the UK and Ireland at the interface between practice, science and policy?
The River Restoration Centre (RRC) is seeking a Senior River Restoration Adviser to provide expert advice and guidance, delivery of assessment, planning and scoping projects, the design and delivery of training courses and the coordination of an international conference on river restoration science. Closing date for receipt of applications is 5th January 2020
RRC in collaboration with the University of Trás-os-Montes and Alto Douro, have been working to create a new, free application to record River Habitat Survey (RHS) sites in the field, using your smartphone. It works on Android phones and tablets, and the simple interface makes it easy to input data similar to how you would have originally completed the paper form. Just work your way through the sections on the App, filling in information at each Spot Check, recording the number of riffles, pools and bars, before carrying out the Sweep Up assessment of the overall reach. The user can also take photographs to be added to the survey, and the data can be exported to the RHS Toolbox and RAPID2 software.
Natural Resources Wales, working with the River Restoration Centre and Bournemouth University, have recently published analysis of River Habitat Survey data from the repeat baseline survey in 2007-9 for six areas across Wales, allowing comparisons to be drawn in terms of levels of modifications and habitat quality. The analyses and indices from this report will be invaluable for Area Based Statements as well as providing evidence for our management and prioritisation of rivers. River restoration is a key priority for NRW and this report suggests a way forward for the assessment of restoration projects as well as modificaitions such as hydropower proposals.
Sue Hearn, Rivers Ecologist, Natural Resources Wales
Each year the River Restoration Centre (RRC) holds an Annual Network Conference that brings together professionals from all areas of river restoration including contractors, engineers, consultants, academics, and representatives from trusts, local organisations, and goverment agencies. The event is run over two days and includes around 50 speakers, workshop sessions and many other opportunities to network and make new contacts. Speakers present interesting, engaging presentations on their research or recent projects on current, hot topics.
Rivers by Nigel Holmes and Paul Raven An attractive new book by Nigel Holmes and Paul Raven should be a ‘must-read’ item for those with a professional, academic or general interest in rivers. Entitled simply ‘Rivers’ it is number 3 in the British Wildlife Collection series, and has 432 pages packed with more than 300 colour photographs, plus charts, graphs and other images. The sub-tilted theme is ‘a natural and not-so-natural history’ and the book describes how British rivers and associated plants, invertebrates, fish, birds and mammals have been changed by Nature and mankind since the last ice age.
It describes how and why these changes have occurred and explains how subtle variations in climate, geology and human history in different parts of Britain, have made each river unique. Three rivers, the Hampshire Meon, Welsh/Cheshire Dee and Endrick in Scotland are used to demonstrate how in more detail. The overall message is that understanding how rivers behave is crucial if they are to be properly managed and conserved for the benefit of people and wildlife into the future.
Copies can be ordered from British Wildlife Publishing (£30, free P&P within the UK) – details can be found here – and orders for signed copies taken by phoning 01865 811316.
How do we ensure that scientific tools, techniques and outputs (e.g. models, software, analytical techniques) are used in the ‘applied’ world’ of industry and government? In this research, we take the example of a group of software called Decision Support Systems (DSS) to discuss, with the help of literature reviews and 2 case studies, the factors affecting their implementation success within organisations. We particularly concentrate on the study of their interaction with organisational culture and the ‘frictions’ that assumptions taken in their design may generate with existing work practice and organisational beliefs. We further propose a methodology for developing models and tools that accounts for organisational and cultural factors, and demonstrate its application on a case study in a major public environmental organisation in the United Kingdom.
The book takes, as an example, the development of ToolHab, a Decision Support System for managing river habitats within the Environment Agency, England and Wales. ToolHab was originally designed for prioritising sites for habitat enhancement work for fish and it is now being tested for other purposes, such as the delivery of a environmental targets under the EU Water Framework Directive. The case studies illustrate the practical and cultural hurdles researchers, software designers and scientists face when attempting to develop methods, techniques and tools for practitioners and what can be done about it. The literature reviewed shows that these issues are by no means restricted to the environmental sector alone but are widespread across public and private industries whether in medicine, marketing or sales. Thus, the approach suggested will be relevant to many scientist, engineers and software developers involved in the production of tools and techniques across a wide spectrum of organisations (link to website).